# 01. 프로젝트 소개 : Document Type Classification
Task : Classification
Evaluation Metric : Macro F1 score
프로젝트 기간 : April 11th, 2024 - April 23rd, 2024 (19:00)
Given Dataset : 17 classes of document images
- Train Data : 1570
- Test Data : 3140
# 02. Project Process
# 03. EDA
- Analysis on label distribution of train data
- Analysis on size/hue distribution of train and test data
- Analysis on augmentation techniques used in test data
# 04. Data Processing
- Train data : data cleansing, upsampling, offline augmentation with augraphy
- Test data : rectification
- Online augmentation with Albumentation in models
# 05. Model
- Integrated version : using ResNet 152 and EfficientNet b4 to classify 17 types
- Individual version : using EfficientNet b4
- step1 : 3-class classification of car/dashboard/documents
- step2 : classification of 15 types of documents
# 06. Submissions
- Submission #1 & #2 & #3 & #4
(2024-04-16)
- Augmentation with augraphy in test stage
- augraphy (docs only) - fold_aug5, delauny_aug5, noisylines_aug5 를 train에 추가
- Submission #1
- (Baseline 0.1992) -> Public LB 0.6263 -> Private LB 0.6131
- training config
model_name = 'resnet101d'
img_size = 128
LR = 1e-3
EPOCHS = 100
BATCH_SIZE = 32
num_workers = 0
- Submission #2
- Public LB 0.6256 -> Private LB 0.6174
- training config
model_name = 'resnet101'
img_size = 128
LR = 1e-3
EPOCHS = 50
BATCH_SIZE = 32
num_workers = 0
- Albumentation (updated 0416_4pm)
- Submission #3
- Public LB 0.6556 -> Private LB 0.6969
- training config
model_name = 'resnet152'
img_size = 384
LR = 1e-3
EPOCHS = 15
BATCH_SIZE = 32
num_workers = 0
- Submission #4
- Public LB 0.6941 -> Private LB 0.7227
- training config
model_name = 'resnet152'
img_size = 384
LR = 1e-3
EPOCHS = 10
BATCH_SIZE = 32
num_workers = 0
- Submission #5 & #6 & #7
- VoronoiTessellation(noise_type="random", p=0.5)
- Submission #5
- Public LB 0.6941 -> Private LB 0.7227
- training config
model_name = 'resnet152'
img_size = 384
LR = 1e-3
EPOCHS = 30
BATCH_SIZE = 16
- Submission #6
- Public LB 0.9218 -> Private LB 0.8985
- training config
model_name = 'resnet152'
img_size = 384
LR = 1e-3
EPOCHS = 30
BATCH_SIZE = 16
- Submission #7
- Public LB 0.9230 -> Private LB 0.9156
- training config
model_name = 'efficientnet_b4'
img_size = 384
LR = 1e-3
EPOCHS = 30
BATCH_SIZE = 16
- Submission #8
- Edge dilated
- Submission #8
- Public LB 0.9329 -> Private LB 0.9243
# 07. Team's Final Result
- Public Score : 3rd (0.9578)
- Private Score : 2nd (0.9441)
'패스트러너 기자단 4기' 카테고리의 다른 글
[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #11 5월 캠프콘 (0) | 2024.05.31 |
---|---|
[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #09_멘토링 (0) | 2024.05.10 |
[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #06_미니 프로젝트 - Upstage 경진대회 #1 (0) | 2024.04.04 |
[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #05_그룹스터디 (1) 첫번째 그룹세미나 (0) | 2024.03.18 |
[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #04_미니 프로젝트 (3) ML 프로젝트 (0) | 2024.03.03 |