본문 바로가기

패스트러너 기자단 4기

[패스트캠퍼스 Upstage AI Lab 2기 부트캠프] #08_미니 프로젝트 - Upstage 경진대회 #2

# 01. 프로젝트 소개 : Document Type Classification

Task : Classification

Evaluation Metric : Macro F1 score

 

프로젝트 기간 : April 11th, 2024 - April 23rd, 2024 (19:00)

 

Given Dataset : 17 classes of document images

  • Train Data : 1570

  • Test Data : 3140

 

 

# 02. Project Process

 

 

# 03. EDA

  • Analysis on label distribution of train data
  • Analysis on size/hue distribution of train and test data
  • Analysis on augmentation techniques used in test data

 

# 04. Data Processing

  • Train data : data cleansing, upsampling, offline augmentation with augraphy
  • Test data : rectification
  • Online augmentation with Albumentation in models

 

# 05. Model

  • Integrated version : using ResNet 152 and EfficientNet b4 to classify 17 types
  • Individual version : using EfficientNet b4
    • step1 : 3-class classification of car/dashboard/documents
    • step2 : classification of 15 types of documents

 

# 06. Submissions

- Submission #1 & #2 & #3 & #4

(2024-04-16)

  • Augmentation with augraphy in test stage
    • augraphy (docs only) - fold_aug5, delauny_aug5, noisylines_aug5 를 train에 추가

 

  • Submission #1
    • (Baseline 0.1992) -> Public LB 0.6263 -> Private LB 0.6131
    • training config
      model_name = 'resnet101d'
      img_size = 128
      LR = 1e-3
      EPOCHS = 100
      BATCH_SIZE = 32
      num_workers = 0
  • Submission #2
    • Public LB 0.6256 -> Private LB 0.6174
    • training config
      model_name = 'resnet101'
      img_size = 128
      LR = 1e-3
      EPOCHS = 50
      BATCH_SIZE = 32
      num_workers = 0

  • Albumentation (updated 0416_4pm)
  • Submission #3
    • Public LB 0.6556 -> Private LB 0.6969
    • training config
      model_name = 'resnet152'
      img_size = 384
      LR = 1e-3
      EPOCHS = 15
      BATCH_SIZE = 32
      num_workers = 0
  • Submission #4
    • Public LB 0.6941 -> Private LB 0.7227
    • training config
      model_name = 'resnet152'
      img_size = 384
      LR = 1e-3
      EPOCHS = 10
      BATCH_SIZE = 32
      num_workers = 0

- Submission #5 & #6 & #7

  • VoronoiTessellation(noise_type="random", p=0.5)
  • Submission #5
    • Public LB 0.6941 -> Private LB 0.7227
    • training config
      model_name = 'resnet152'
      img_size = 384
      LR = 1e-3
      EPOCHS = 30
      BATCH_SIZE = 16

  • Submission #6
    • Public LB 0.9218  -> Private LB 0.8985
    • training config
      model_name = 'resnet152'
      img_size = 384
      LR = 1e-3
      EPOCHS = 30
      BATCH_SIZE = 16
  • Submission #7
    • Public LB 0.9230  -> Private LB 0.9156
    • training config
      model_name = 'efficientnet_b4'
      img_size = 384
      LR = 1e-3
      EPOCHS = 30
      BATCH_SIZE = 16

 

- Submission #8

  • Edge dilated
  • Submission #8
    • Public LB 0.9329 -> Private LB 0.9243

 

# 07. Team's Final Result

  • Public Score : 3rd (0.9578)

  • Private Score : 2nd (0.9441)